Synthesis of novel thiazolidin-4-ones by reaction of malonthioamide derivatives with dimethyl acetylenedicarboxylate

Vera S. Berseneva, ${ }^{a}$ Alexey V. Tkachev, ${ }^{b}$ Yury Yu. Morzherin, ${ }^{,}$Wim Dehaen, ${ }^{*, c}$ Ingrid Luyten, ${ }^{c}$ Suzanne Toppet ${ }^{c}$ and Vasiliy A. Bakulev ${ }^{*, a}$
${ }^{a}$ Department of Technology and Organic Synthesis, Ural State Technical University, 620002, Ekaterinburg, Russia
${ }^{b}$ Novosibirsk's Institute of Organic Chemistry, 630090, Novosibirsk, Russia
${ }^{\text {c }}$ Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Leuven (Heverlee), Belgium

Novel 2,5-dimethylenethiazolidin-4-one derivatives have been prepared by reaction of malonthioamide derivatives with dimethyl acetylenedicarboxylate. These compounds exist as separate (E, Z)- and (Z, Z) isomers or as a mixture. The (E, Z)-isomer is formed as the initial product which transforms to the (Z, Z) isomer under mild conditions. The structures of the obtained compounds have been confirmed by IR and NMR spectroscopy.

Introduction

Reactions of acetylene derivatives with compounds containing a thiocarbamoyl group are known to follow various routes to form thiazole, ${ }^{1-7}$ thiazine ${ }^{6-9}$ and pyridine ${ }^{10}$ rings, as well as vinylmercapto heterocycles. ${ }^{7}$ The outcome of the reaction has been shown to depend on both the structure of the thioamide and the nature of the acetylene component. ${ }^{4,6,7,9}$ Despite the fact that the condensation of thioureas with dimethyl acetylenedicarboxylate (DMAD) is known to be a convenient method to prepare 2-imino-5-methoxycarbonylthiazolidin-4ones, ${ }^{1-3,5,111,12}$ the malonthioamide derivatives, which are the carbon analogs of thioureas, have not been subjected to this reaction yet.
Thus, as a means to prepare novel 2,5 -dimethylenethiazol-idin-4-one derivatives, we have studied the cyclizations of malonthioamide derivatives with DMAD.

Results and discussion

Both the acetylene and thioamide compounds possess a number of possible electrophilic and nucleophilic centers and one could expect the potential formation of at least six fivemembered and six six-membered heterocycles along with a number of macrocycles and polymers.

The reaction of 2-(ethoxycarbonyl)thioacetamide 1a with dimethyl acetylenedicarboxylate affords only one product (Scheme 1), which was identified by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy as the thiazolidine 2a.

On the basis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, shown in Tables 1 and 2, the correct structure could be assigned to compounds $\mathbf{2}$. Structures having an exocyclic sulfur can be excluded because of the absence of signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $170-190$ ppm which are typical for the thiocarbonyl and thiolactone carbon. The thiazinone structure $\mathbf{3}$ could be rejected on the basis of the ${ }^{2} J_{\mathrm{C}-\mathrm{H}}$ and ${ }^{3} J_{\mathrm{C}-\mathrm{H}}$ coupling constants. This method was successfully employed to determine the structures of compounds obtained in the reaction of thioureas with acetylene derivatives. ${ }^{11}$ The signal for C 7 in the spectra of $\mathbf{2 a}$ appears as a doublet of quartets and exhibits a ${ }^{3} J_{\mathrm{C}-\mathrm{H}}$ coupling of 4.2 Hz with the protons of the methyl ester group and a small $\mathrm{C}-\mathrm{H}$ coupling of 1.1 Hz . The magnitude of the latter corresponds to a ${ }^{2} J_{\mathrm{C} 7-\mathrm{H} 6}$ coupling constant (over two bonds) and is in agreement with the presence of an exocyclic double bond, which corresponds to the thiazolidine structure $\mathbf{2 a}$.

Scheme 1

2

3

To determine which of the signals could be associated either with H6 or H8 we prepared the model compounds 5a,b via the reaction of DMAD with hydrazono acyl thioacetamides 4a,b (Scheme 2) and examined their ${ }^{1} \mathrm{H}$ NMR spectra. In the thiazolidines 5a,b, the methylene group at C 2 is absent, allowing us to assign the methylene proton at C 6 more easily.

The hydrazones $\mathbf{4}$ were obtained by a diazo coupling reaction of the corresponding thioacetamides with a 4-methylphenyldiazonium salt. The treatment of thioamides $\mathbf{4 a}, \mathbf{b}$ with DMAD in absolute alcohol then afforded thiazolidines $\mathbf{5 a}, \mathbf{b}$. The ${ }^{1} \mathrm{H}$ NMR spectra of these compounds contain a singlet corresponding to the H 6 methine proton at 6.73 ppm . This allows us, by analogy, to assign the signal at 5.7 ppm in the spectra of compound 2a to H 8 .

Table $1{ }^{1} \mathrm{H}$ NMR Chemical shifts (δ / ppm) of $\mathbf{2 a}-\mathbf{h}$ and $\mathbf{2} \mathbf{a}^{\prime}-\mathbf{h}^{\prime}$

Compound	Solvent	${ }^{1} \mathrm{H}$ Chemical shifts
2a	CDCl_{3}	$10.8(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 5.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$
$2 \mathrm{a}^{\prime}$	CDCl_{3}	$9.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 4.25\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$
2b	CDCl_{3}	$11.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$
2b ${ }^{\prime}$	[${ }^{2} \mathrm{H}_{6}$]DMSO	$12.2(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 6.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 6.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$
2c	$\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO	13.8-11.2 (1H, br s, NH), 6.66 (1H, s, H6), 5.43 (1H, s, H8), 3.78 (3H, s, OMe)
$2 \mathrm{c}^{\prime}$	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	13.8-11.2 (1H, br s, NH), 6.72 (1H, s, H6), 5.38 (1H, s, H8), 3.80 (3H, s, OMe)
2d	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$12.39(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.47(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.0-8.2(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.0-7.2(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{ArH}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 6.20(1 \mathrm{H}$, s, H8), $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$
2e	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$\begin{aligned} & 11.63(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 10.10(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 7.56(2 \mathrm{H}, \mathrm{~d}, \mathrm{ArH}), 7.37(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH}), 6.71(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 6), 5.83(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 8) \text {, } \\ & 3.79\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right) \end{aligned}$
$2 \mathrm{e}^{\prime}$	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$\begin{aligned} & 12.41(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 10.06(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 7.55(2 \mathrm{H}, \mathrm{~d}, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH}), 6.55(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 6), 6.14(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 8) \text {, } \\ & 3.76\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right) \end{aligned}$
2f	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$\begin{aligned} & 11.73(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 9.41(1 \mathrm{H}, \mathrm{~s}, \mathrm{NH}), 7.12-6.89(4 \mathrm{H}, \mathrm{~m}, \mathrm{ArH}), 6.91(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 6), 6.08(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 8), 3.84(3 \mathrm{H}, \mathrm{~s} \text {, } \\ & \left.\mathrm{OCH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right) \end{aligned}$
$2 \mathbf{f}^{\prime}$	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$12.42(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.52(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.01(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 7.08-7.03(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.93-6.89(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.54$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}\right), 6.38(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$
2g	CDCl_{3}	$11.9(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 5.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.60\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{3}\right), 3.49(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 1.4-1.7\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right)$
$\mathbf{2 g}{ }^{\prime}$	CDCl_{3}	$9.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 5.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.60\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{3}\right), 3.49(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 1.4-1.7\left(6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}\right)$
2h	${ }^{2} \mathrm{H}_{6}$]DMSO	$11.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 6.22(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.4-3.6\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right)$
$\mathbf{2 h}^{\prime}$	$\left.{ }^{[2} \mathrm{H}_{6}\right]$ DMSO	$12.2(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 6), 6.18(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.3-3.7\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right)$
5a	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$\begin{aligned} & 7.92(1 \mathrm{H}, \mathrm{~d}, \mathrm{NH}), 7.31 \text { and } 7.52\left(4 \mathrm{H}, \mathrm{AB}, J 8.4, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.73(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 6), 3.81\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 2.88\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) \text {, } \\ & 2.35\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) \end{aligned}$
5b	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	$7.90(1 \mathrm{H}, \mathrm{~d}, \mathrm{NH}), 7.33 \text { and } 7.55\left(4 \mathrm{H}, \mathrm{AB}, J 8.4, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.73(1 \mathrm{H}, \mathrm{~s}, \mathrm{H} 6), 3.81\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{OCH}_{3}\right), 3.1-3.6(8 \mathrm{H}, \mathrm{~m},$ $\left.4 \mathrm{CH}_{2}\right), 2.37\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right)$

Scheme 2
The presence of two exocyclic double bonds in the structure of 2a allows for several geometric configurations. Indeed the heating of thiazolidine $\mathbf{2 a}$ in ethanol or DMSO leads to the formation of the isomeric product $\mathbf{2 a} \mathbf{a}^{\prime}$ (Scheme 3). This process

Scheme 3
proceeded in 20% conversion after 7 days when chloroform was used as a solvent. A number of thioamides $\mathbf{1 b} \mathbf{- h}$ were reacted analogously with DMAD to afford the thiazolidine products 2b-h (Scheme 1). The N, N-dimethylcarbamoyl derivative 1b gave a mixture, from which both $\mathbf{2 b}$ and an isomeric compound $\mathbf{2 b}$ ' were isolated. Cyanothioacetamide 1c gave an inseparable mixture of thiazolidines $\mathbf{2 c}, \mathbf{c}^{\prime}$, whereas the other thioamides $\mathbf{1 d}-\mathbf{h}$ only yielded the isomer $\mathbf{2 d}-\mathbf{h}$. The formation of the second isomers for the products $\mathbf{2 d}-\mathbf{h}$ were monitored by TLC and NMR spectroscopy; these isomers were not isolated. The geometric configuration of $\mathbf{2 a - h}$ and $\mathbf{2 a} \mathbf{a}^{\prime}-\mathbf{h}^{\prime}$ was studied in
detail with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The ${ }^{13} \mathrm{C}$ NMR chemical shifts and coupling constants $\left({ }^{2} J_{\mathrm{C} 7-\mathrm{H} 6} \sim 1 \mathrm{~Hz} ;{ }^{3} J_{\mathrm{C} 4-\mathrm{H} 6} \sim\right.$ 5 Hz) of $\mathbf{2 a}-\mathbf{h}$ and $\mathbf{2 a} \mathbf{a}^{\prime}-\mathbf{h}^{\prime}$ indicate that for both isomers $\mathbf{2 a}-\mathbf{h}$ and $\mathbf{2 a} \mathbf{a}^{\prime}-\mathbf{h}^{\prime}$ the C5=C6 double bond exists in the (Z) configuration and therefore the formation of the second isomer of $\mathbf{2 a}-\mathbf{h}$ can be associated only with rotation about the $\mathrm{C} 2=\mathrm{C} 8$ bond (Table 2). The configuration of the $\mathrm{C} 2=\mathrm{C} 8$ bond was determined by 1D NOE experiments. In the case of the $(Z, Z)-$ isomer we expected that saturation of the NH-proton would give an NOE enhancement of the H 8 -proton but instead we performed an excitation on the $\mathrm{H}_{2} \mathrm{O}$-signal because the $\mathrm{N}-\mathrm{H}$ signal was broad and in some cases even not observed. Because of chemical exchange between the labile $\mathrm{N}-\mathrm{H}$ proton with $\mathrm{H}_{2} \mathrm{O}$ the transfer of saturation from $\mathrm{H}_{2} \mathrm{O}$ to the $\mathrm{N}-\mathrm{H}$ proton leads to an NOE enhancement of the H8-proton. These experiments have proved that the compounds $\mathbf{2 \mathbf { a } ^ { \prime }}-\mathbf{h}^{\prime}$ can be assigned the (Z, Z)-isomeric form. The proton chemical shifts of the compounds $\mathbf{2 a}-\mathbf{h}$ and $\mathbf{2} \mathbf{a}^{\prime}-\mathbf{h}^{\prime}$ are shown in Table 1.

We have also studied the conversion of $\mathbf{2 a - h}$ [the $(E, Z)-$ isomer] to $2 \mathbf{a}^{\prime}-\mathbf{h}^{\prime}$ [the (Z, Z)-isomer] in $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO by ${ }^{1} \mathrm{H}$ NMR spectroscopy at 298 K . The compounds $\mathbf{2 b}, \mathbf{e}, \mathbf{f}$ convert in 100% yield to their (Z, Z)-isomer, compound $\mathbf{2 c}$ in 82% and compound $\mathbf{2 h}$ in 80%. In CDCl_{3}, $\mathbf{2 a}$ only converts in 10% yield to $\mathbf{2 a} \mathbf{a}^{\prime}$. Clearly, the (E, Z)-isomers $\mathbf{2}$ are stabilized in non-polar solvents by the formation of an intramolecular hydrogen bond. In a polar solvent, such as $\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$, intermolecular hydrogen bonding with the solvent allows the formation of the (Z, Z) isomers, which now may be stabilized by a close $\mathrm{S} \cdots \mathrm{O}$ contact. ${ }^{13}$ This also explains the formation of the two isomers in the case of $\mathbf{2 c}-\mathbf{c}^{\prime}$, where the cyano function will not interact either with the sulfur or the NH-group of the thiazolidine ring.

Conclusions

Thus, reaction of malonthioamide derivatives with dimethyl acetylenedicarboxylate leads to new thiazole derivatives, and to the previously unknown 2,5-dimethylenethiazolidin-4-one system. It is worth noting that compounds $\mathbf{1}$, in contrast to thiocarbamoylazomethine ylide ${ }^{7}$ and enamino thioamides, ${ }^{6}$ do not enter into the reaction with methyl propiolate, which reveals their relatively low nucleophilicity.

Table $2{ }^{13} \mathrm{C}$ NMR Chemical shifts (δ / ppm) and coupling constants for $\mathbf{2 a}-\mathbf{h}$ and $\mathbf{2 a} \mathbf{a}^{\prime}-\mathbf{h}^{\prime}{ }^{a}$

		${ }^{13} \mathrm{C}$ Chemical shifts δ											
	Solvent	C2	C4	C5	C6	C7	C8	$\begin{aligned} & \mathrm{C}=\mathrm{O} \\ & \left(\mathrm{R}^{1}\right) \end{aligned}$	${ }^{3} J_{\text {C4-H6 }}$	${ }^{2} J_{\text {C7-H6 }}$	${ }^{2} J_{\text {C5-H6 }}$	${ }^{1} J_{\text {C8-H8 }}$	${ }^{1} J_{\mathrm{C} 6-\mathrm{H} 6}$
2 a	CDCl_{3}	150.5 (dd)	164.6 (dd)	140.6 (dd)	115.8 (d)	166.6 (dq)	92.8 (d)	167.0 (t)	5.1	1.1	1.8	170.2	173.0
$2 \mathbf{a}^{\prime}$	CDCl_{3}	150.1 (dd)	165.9 (dd)	142.4 (dd)	116.4 (d)	166.1 (dq)	94.9 (d)	$\begin{aligned} & 166.5 \\ & (\mathrm{t}) \end{aligned}$	5.4	1.4	1.2	166.2	173.0
2b	CDCl_{3}	148.4 (dd)	164.6 (d)	141.2 (br d)	114.7 (d)	166.8 (dq)	91.4 (d)	$\begin{aligned} & 165.7 \\ & (\mathrm{qqd}) \end{aligned}$	5.1	1.1		163.5	172.6
2b ${ }^{\prime}$	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	148.4 (s)	165.0 (d)	145.5 (br s)	113.0 (d)	166.0 (dq)	93.0 (d)	$\begin{aligned} & 165.6 \\ & (\mathrm{qqd}) \end{aligned}$	5.5	1.4		161.8	171.0
2 c	${ }^{2}{ }^{2} \mathrm{H}_{6}$]DMSO	153.6	165.8 (d)	142.7 (d)	114.5 (d)	166.1	70.0 (d)				1.8	181.0	173.0
$2 \mathrm{c}^{\prime}$	$\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO	154.9 (d)	165.3 (d)	141.8 (dd)	114.5 (d)	166.0 (dq)	72.1 (d)		5.0	1.0	1.0	180.6	180.6
$2 \mathrm{e}^{\prime}$	$\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO	148.4 (s)	164.4 (d)	144.9 (br s)	113.5 (d)	166.1 (dq)	95.7 (d)	$\begin{aligned} & 165.3 \\ & (\mathrm{qqd}) \end{aligned}$					
$2 \mathbf{f}^{\prime}$	$\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO	147.2 (br s)	164.5 (d)	145.2	112.9	166.0 (dq)	97.6	165.2					
2h	$\left.{ }^{2}{ }^{2} \mathrm{H}_{6}\right]$ DMSO	147.1 (br s)	164.2 (d)	141.6	113.2	166.2 (dq)	92.2	164.4	5.0				
2h'	$\left.{ }^{2} \mathrm{H}_{6}\right]$ DMSO	149.6 (br s)	165.0 (d)	145.3	113.2	166.0 (dq)	92.2	164.6	5.0	1.8			
2 g	CDCl_{3}	148.4 (br s)	164.6 (dd)	141.4 (dd)	114.6 (d)	166.9 (dq)	91.3 (d)	$\begin{aligned} & 164.7 \\ & (\mathrm{~m}) \end{aligned}$	5.8	1.1	2.1	163.0	173.0
$\mathbf{2 g}{ }^{\prime}$	CDCl_{3}	148.9 (s)	166.1 (br d)	143.3 (s)	115.6 (d)	165.9 (dq)	93.3 (d)	$\begin{aligned} & 165.9 \\ & (\mathrm{~m}) \end{aligned}$	5.8	1.4		159.9	172.0

${ }^{a} J$ Values are given in Hz .

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100 MHz , respectively, on a Bruker AMX 400 with SiMe_{4} as internal reference in either $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO or CDCl_{3} solutions. IR Spectra were obtained on a Specord IR spectrometer as KBr pellets. Products were analyzed by TLC on DC-Plastikfolen Kieselgel 60 F 254 plates. The melting points are uncorrected. The monothioamides ($\mathbf{1} \mathbf{a}-\mathbf{h}$) were prepared by the reaction of the corresponding nitriles with hydrogen sulfide, as reported. ${ }^{14}$
(E)-2-(Ethoxycarbonylmethylene)-(Z)-5-(methoxycarbonyl-methylene)thiazolidin-4-one 2a
DMAD (0.002 mol) Was added to a solution of thioacetamide 1a (0.002 mol) in chloroform. The mixture was stirred at room temperature for 2 h . Filtration gave compound $\mathbf{2 a}$ as yellow crystals, $\mathrm{mp} 175-178^{\circ} \mathrm{C}$ (from ethanol). Yield 64% (Found: C, 46.36; H, 3.98; N, 5.80; S, 12.9. Calc. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 46.70$; H, 4.28; N, 5.40; S, 12.45\%); $v_{\max } / \mathrm{cm}^{-1} 3190,3050,1730,1690$.

2-(N, N-Dimethylcarbamoylmethylene)-5-(methoxycarbonyl-methylene)thiazolidin-4-one 2b

DMAD (0.002 mol) Was added to a stirred solution of $\mathbf{1 b}$ $(0.002 \mathrm{~mol})$ in chloroform. After 30 min a precipitate of $(Z)-2-$ (N, N-dimethylcarbamoylmethylene)-(Z)-5-(methoxycarbonyl-methylene)thiazolidin-4-one $\mathbf{2 b}^{\prime}$ was collected as yellow crystals, mp 224-227 ${ }^{\circ} \mathrm{C}$ (from ethanol). Yield 17% (Found: C, 47.26; H, 4.87; N, 10.93; S, 12.88. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: C, 46.87; H, 4.72; N, 10.93; S, 12.51\%); $v_{\max } / \mathrm{cm}^{-1} 3050,1730$, 1630.

Evaporation of the filtrate gave yellow needles of (E)-2(N, N-dimethylcarbamoylmethylene)-(Z)-5-(methoxycarbonyl-methylene)thiazolidin-4-one 2b, mp 178-180 ${ }^{\circ} \mathrm{C}$ (from ethanol). Yield 66% (Found: C, 47.12; H, 5.12; N, 11.10; S, 13.0. Calc. for $\left.\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 46.87 ; \mathrm{H}, 4.72 ; \mathrm{N}, 10.93 ; \mathrm{S}, 12.51 \%\right) ; v_{\max } / \mathrm{cm}^{-1}$ 3160, 3040, 1730, 1680.

(E, Z)-2-Cyanomethylene-(Z)-5-(methoxycarbonylmethylene)-thiazolidin-4-one 2c

Following the method for the preparation of $\mathbf{2 a}$, compound $\mathbf{2 c}$ was obtained as a mixture of yellow needles, yield $46 \%, \mathrm{mp}$ $231-233{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: N, 13.33; S, 15.28. Calc. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: $\mathrm{N}, 13.45$; $\mathrm{S}, 15.27 \%$).
(E)-2-[N-(2-Methylphenyl)carbamoylmethylene]-(Z)-5-(methoxycarbonylmethylene)thiazolidin-4-one 2d
Following the method for the preparation of 2a, compound $\mathbf{2 d}$ was obtained as yellow needles, yield 66%, mp $222-225^{\circ} \mathrm{C}$ (from ethanol) (Found: N, 9.1; S, 10.5. Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: N, 8.8; S, 10.1\%).
(E)-2-[N-(2,6-Dichlorophenyl)carbamoylmethylene]-(Z)-5-(methoxycarbonylmethylene)thiazolidin-4-one 2 e
Following the method for the preparation of $\mathbf{2 a}$, compound $\mathbf{2 e}$ was obtained as yellow crystals, yield 54%, mp 237-240 ${ }^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{N}, 7.2 ; \mathrm{S}, 8.3$. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{N}, 7.5 ; \mathrm{S}, 8.6 \%\right)$.

(E)-2-[N-(2-Methoxyphenyl)carbamoylmethylene]-(Z)-5-(methoxycarbonylmethylene)thiazolidin-4-one $2 f$

Following the method for the preparation of $\mathbf{2 a}$, compound $\mathbf{2 f}$ was obtained as yellow crystals, yield $54 \%, \mathrm{mp} 216-218^{\circ} \mathrm{C}$ (from ethanol) (Found: N, 8.6; S, 9.4. Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{N}$, 8.4; S, 9.6\%).
(E)-2-(2-Oxo-2-piperidinoethylidene)-(Z)-5-(methoxycarbonyl-methylene)thiazolidin-4-one $\mathbf{2 g}$
Following the method for the preparation of $\mathbf{2 a}$, compound $\mathbf{2 g}$ was obtained as yellow needles, yield $74 \%, \mathrm{mp} 143-145^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{N}, ~ 9.63 ; \mathrm{S}, 11.30$. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{N}, 9.46 ; \mathrm{S}, 10.81 \%\right) ; v_{\max } / \mathrm{cm}^{-1} 3200,3060,1720$, 1680.

(\boldsymbol{E})-2-[2-Oxo-2-(morpholin-4-yl)ethylidene]-(Z)-5-(methoxy-carbonylmethylene)thiazolidin-4-one 2 h

Following the method for the preparation of $\mathbf{2 a}$, compound $\mathbf{2 h}$ was obtained as yellow needles, yield 76%, mp $168-172{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 48.57; H, 4.87; N, 9.14; S, 11.22. Calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C, 48.32; H, 4.73; N, 9.39; S, 10.75\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3160,3020,1720,1690$.

2-(N, N-Dimethylcarbamoyl)-2-(p-tolylhydrazono)thioacetamide

 4 aA solution of $\mathrm{NaNO}_{2}(0.0027 \mathrm{~mol})$ in water $(5 \mathrm{ml})$ was added to an ice-cooled solution of p-toluidine (0.0027 mol) in 7% hydrochloric acid. This diazonium salt solution was added to a stirred solution of thioacetamide $\mathbf{1 b}(0.0027 \mathrm{~mol})$ in ethanol at
$5-10^{\circ} \mathrm{C}$. The pH of the reaction mixture was kept at $6-7$ by addition of solid sodium acetate. The reaction mixture was left overnight in the refrigerator. Filtration gave the yellow aryl hydrazone $\mathbf{4 a}, \mathrm{mp} 218-220^{\circ} \mathrm{C}$ (from ethanol). Yield 64% (Found: N, 20.78; S, 12.53. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$: $\mathrm{N}, 21.19$; S, 12.13\%).

2-(Morpholin-4-ylcarbonyl)-2-(p-tolylhydrazono)thioacetamide 4b

Following the method for the preparation of $\mathbf{4 a}$, compound $\mathbf{4 b}$ was obtained as yellow crystals, yield 60%, mp $223-225^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 55.27; H, 5.97; N, 18.73. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 54.90 ; \mathrm{H}, 5.88 ; \mathrm{N}, 18.30 \%\right)$.

2-[p-Tolylhydrazono(N, N-dimethylcarbamoyl)methylene]-methoxycarbonylmethylene-4,5-dihydrothiazol-4-one 5a
DMAD (0.0025 mol) Was added to a solution of hydrazone $\mathbf{4 a}$ $(0.002 \mathrm{~mol})$ in absolute ethanol. The mixture was stirred at room temperature for 2 h . Filtration gave the compound 5a (66%) as red crystals, $\mathrm{mp} 238-240{ }^{\circ} \mathrm{C}$ (from ethanol) (Found: N, 14.54; $\mathrm{S}, 8.56$. Calc. for $\left.\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{N}, 14.96 ; \mathrm{S}, 8.56 \%\right)$.

2-[p-Tolylhydrazono(morpholin-4-ylcarbonyl)methylene]-5-(methoxycarbonylmethylene)thiazolidin-4-one 5b
Following the method for the preparation of $\mathbf{5 a}$, compound $\mathbf{5 b}$ was obtained (68%) as red crystals, yield 68%, mp $223-225^{\circ} \mathrm{C}$ (from ethanol) (Found: N, 13.86; S, 8.12. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}: \mathrm{N}, 13.45 ; \mathrm{S}, 7.70 \%$).

Acknowledgements

The Ekaterinburg group (V. A. B.) is grateful to the Russian Foundation for Basic Research (Grant 97.03.32941a) for
financial support. W. D. also thanks the Ministerie voor Wetenschapsbeleid and the University of Leuven for their support. I. L. is a Postdoctoral Fellow of the FWO-Vlaanderen.

References

1 J. B. Hendrickson, P. Reeds and J. F. Templeton, J. Am. Chem. Soc., 1964, 86, 107.
2 H. Nagase, Chem. Pharm. Bull., 1973, 21, 270.
3 L. I. Giannola, S. Palazzo, P. Agozzino, L. Lamatrina and L. Caraulo, J. Chem. Soc., Perkin Trans. 1, 1978, 1428.

4 L. I. Giannola, G. Giammona, S. Palazzo and L. Lamatrina, J. Chem. Soc., Perkin Trans. 1, 1984, 2707.

5 V. Ya. Causs, E. E. Liepinsh, I. Ya. Calvinish and E. Ya. Lucevic, Khim. Geterotsikl. Soedin., 1990, 120.
6 S. Coen, B. Ragonnet, C. Vieillescazes and J. P. Roggero, Heterocycles, 1985, 23, 1225.
7 V. S. Berseneva, N. Yu. Biryucheva and V. A. Bakulev, Khim. Geterotsikl. Soedin., 1993, 1688.
8 J. W. Lown and J. C. N. Ma, Can. J. Chem., 1967, 45, $939,953$.
9 G. Giammona, M. Neri, B. Carlisi, A. Pazzo and C. La Rosa, J. Heterocycl. Chem., 1991, 28, 325.

10 L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, V. K. Promonenkov, B. M. Zolotarev and V. Yu. Mortikov, Zh. Org. Khim., 1986, 22, 223.
11 U. Vojeli, W. Von. Philipsborn, K. Nagarajan and M. D. Nair, Helv. Chim. Acta, 1978, 61, 607.
12 R. M. Achenson and J. D. Wallis, J. Chem. Soc., Perkin Trans. I, 1981, 415.
13 B. D'hooge and W. Dehaen, Bull. Soc. Chim. Belg., 1997, 106, 729.
14 V. A. Bakulev, E. F. Dankova, A. T. Lebeev, V. S. Mokrushin and V. S. Petrosyan, Tetrahedron, 1989, 45, 7329.

Paper 8/03543A
Received 12th May 1998
Accepted 22nd May 1998

